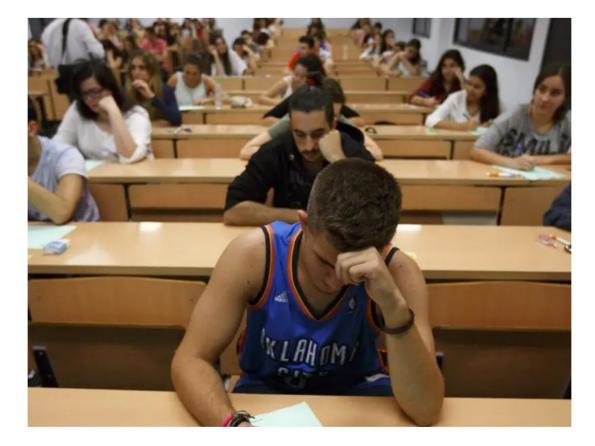
Change of course ymposium

AI-2-AI

Adding Insight to Artificial Intelligence

Prof Gabriel D Weymouth Ship Hydrodynamics, TU Delft

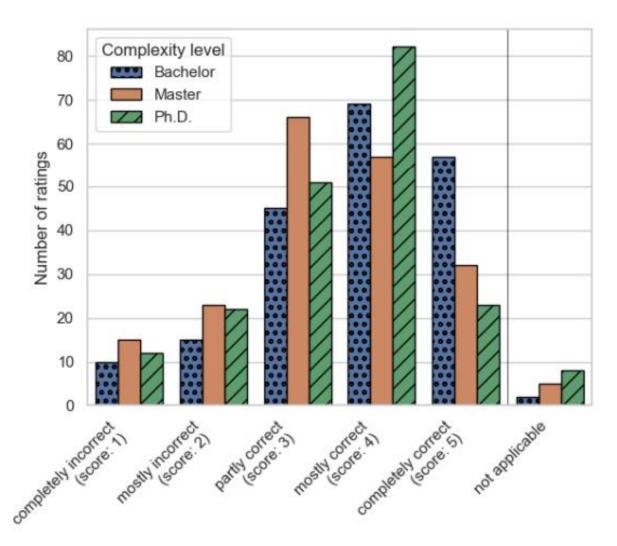
GPT-4 aced the SAT Reading & Writing section with a score of 710 out of 800, which puts it in the 93rd percentile of test-takers.



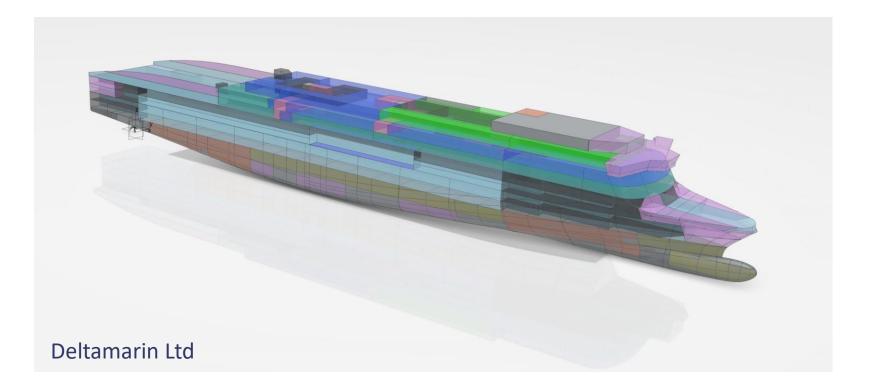
GPT-4 scored in the 90th percentile of the bar exam with a score of 298 out of 400.

"What does ChatGPT know about natural science and engineering?" Balhorn et al, <u>arXiv:2309.10048</u>, 2023

- ChatGPT answered scientific questions "mostly correct"
- Responds 10³ times faster than students!

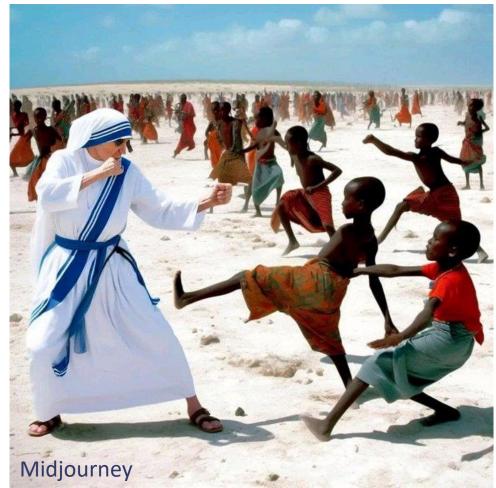


How long before AI replaces ship designers?



Data-driven models have no contextual understanding

"Create an image of Mother Terresa fighting against poverty"



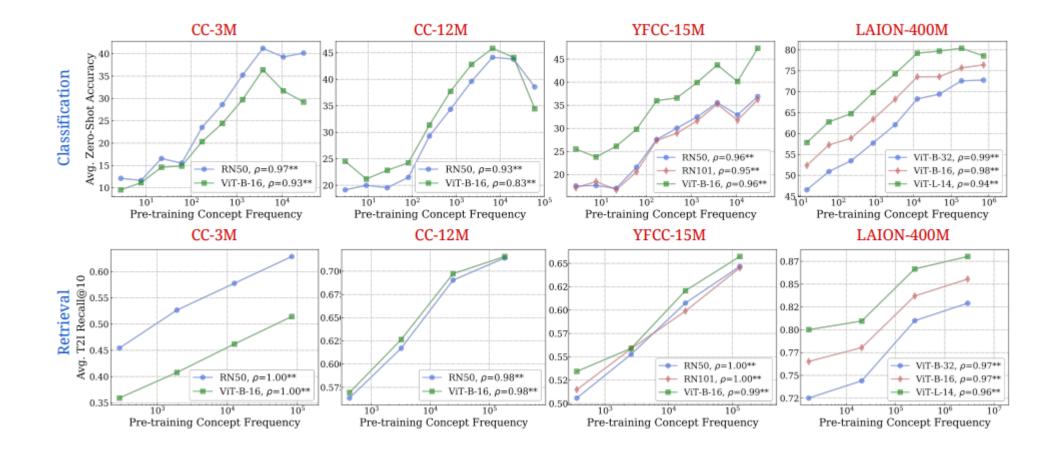
Data-driven models are interpolating, not reasoning

"panda" 57.7% confidence "nematode" 8.2% confidence

Explaining and Harnessing Adversarial Examples

Goodfellow et al, <u>arXiv: 1412.6572</u>, 2015

Data-driven models need exponential data to improve



DEK

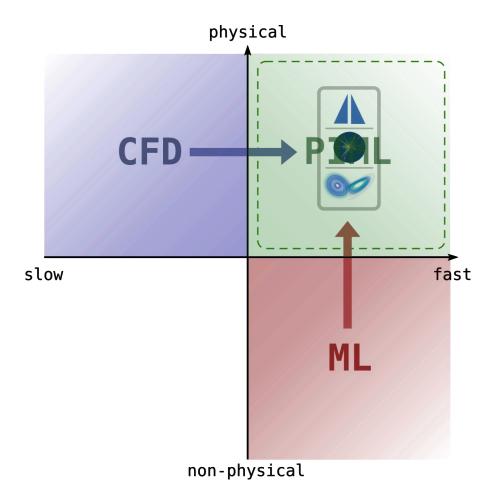
MARITIME

Change of course

mposium

No "Zero-Shot" Learning Without Exponential Data, Udandarao et al, <u>arXiv: 2404.04125</u>, 2024

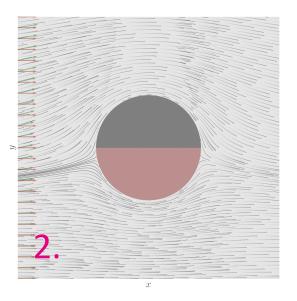
Goal: Supply physical insight to data-driven models



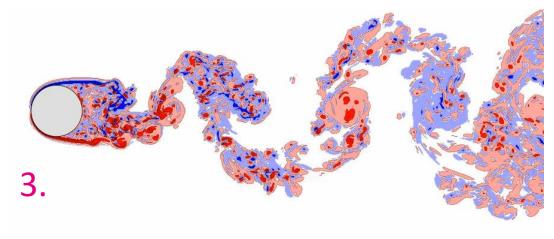
Change of course Symposium

Adding Insight to Artificial Intelligence

- 1. Nonlinear groups for nonlinear pendulum
- 2. Field constraints for flow field predictions

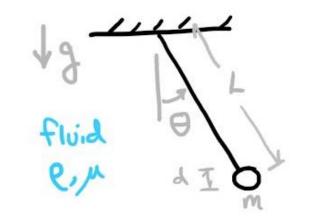


3. 2D momentum for slender geometries



Submerged nonlinear pendulum: Model problem for *nonlinear* fluid-structure interactions

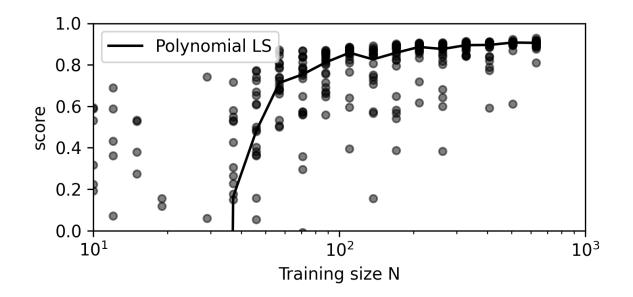
Submerged nonlinear pendulum: Model problem for *nonlinear* fluid-structure interactions



$$\omega_n = f(\theta_{o,m,L}, d, e, \mu, g)$$

- Goal: Predict natural frequency
- Database: 1000 simulations
 - Length: 50 150cm,
 - Diameter: 15 50 mm
 - Bob material: aluminum gold
 - Liquid: water glycerol
 - Starting angle: $-\pi/2 \pi/2$
 - Gravity: Mercury, Venus, Earth, ..., Neptune

Data-driven models need exponential data

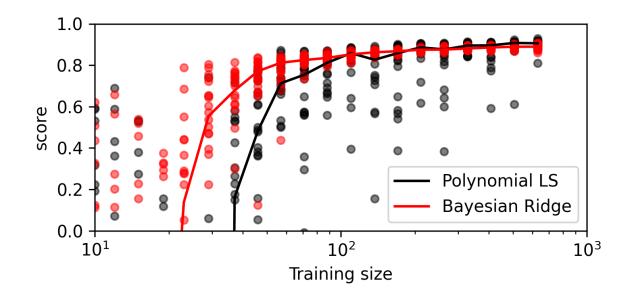


- Randomly sample N cases for training
- Dots: R² score on remaining 1000-N cases
- Lines: median R² at each training size

Data:
$$\vec{x}_i, y_i$$

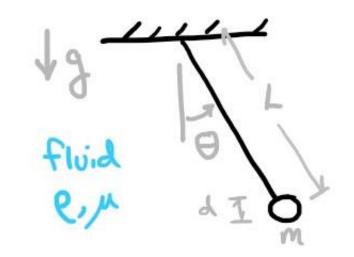
Model: $f(\vec{x} \mid \Theta)$
 $loss(\Theta(\vec{x}_i, y_i) = \sum_i \chi(y_i - f(\vec{x}_i \mid \Theta))$
 $Optimize: \hat{\Theta} = argmin \ bss(\Theta(\vec{x}_i, y_i))$
 $Redict : \hat{y} = f(\vec{x} \mid \hat{\Theta})$

Statistical regularization helps limit data-dependance, a bit...



How can we add physical insight?

Physical knowledge constrains & simplifies ML problem



Dimensional analysis

- Reduced dimension: $7 \rightarrow 4$
- Nonlinear scaling of the inputs and outputs!

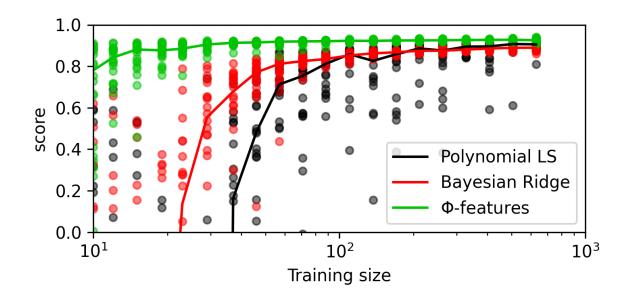
 $\omega_n = f(\Theta_{0,m,L}, d, e, \mu, g)$ $\frac{\omega_{L}}{2} = f(\theta_{0}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

DEK

MARITIME

hange of course

Physical knowledge constrains & simplifies ML problem



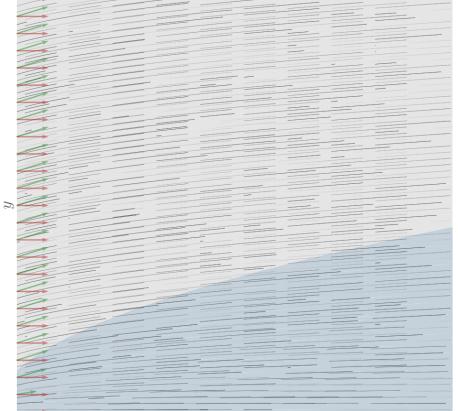
Almost perfect results with only 20 examples!

Features:
$$\vec{z}_i = \vec{\varphi}(\vec{x}_i), \ \omega_i = \psi(\vec{x}_i, y_i)$$

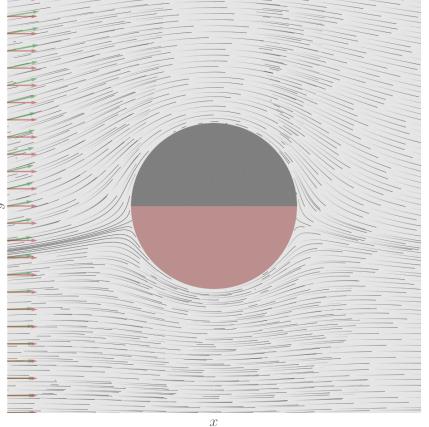
Model: $f(\vec{z} \mid \Theta) = \omega$
Predict: $\hat{y} = \psi'(f(\vec{\varphi}(\vec{x}) \mid \widehat{\Theta}))$

Can this be extended for quantitative field predictions?

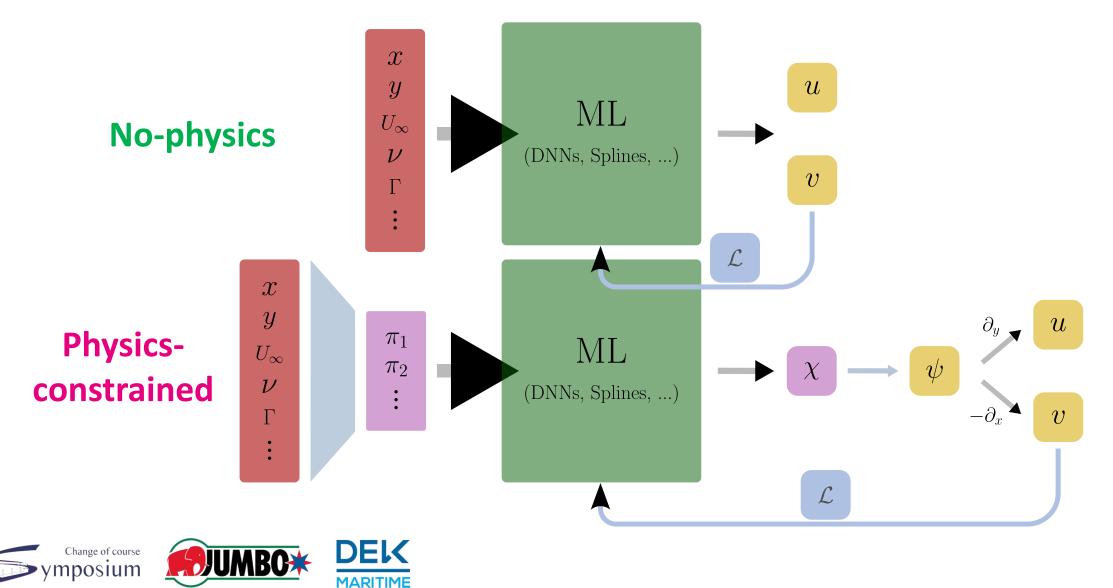
Blasius boundary layer



x

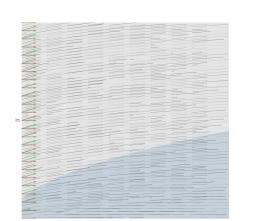


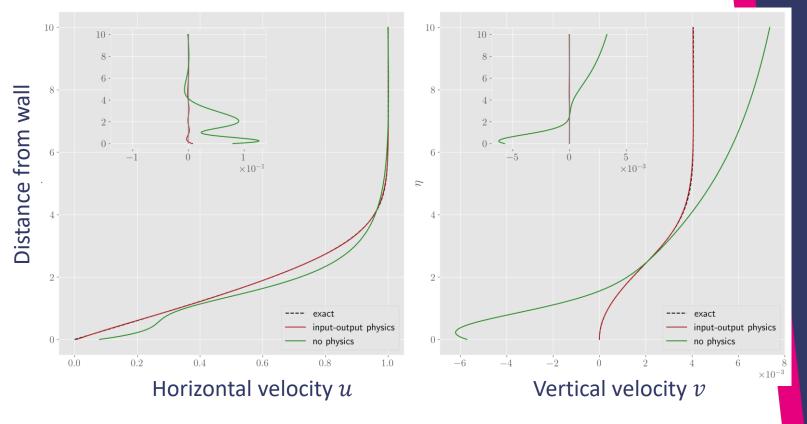
Physical knowledge constrains & simplifies ML problem



Physics-constraints massively improve predictions with small data

- Blasius Boundary Layer
 - $[x, y, U, v] \rightarrow [u, v]$
 - Tiny 6 neuron network & only 500 examples
- Pure data-driven
 - Unphysical *u* slip
 - Completely ignores v
- Physics-constrained
 - Essentially perfect





Physics-constrained is very good but still can't extrapolate

 C^{-3}

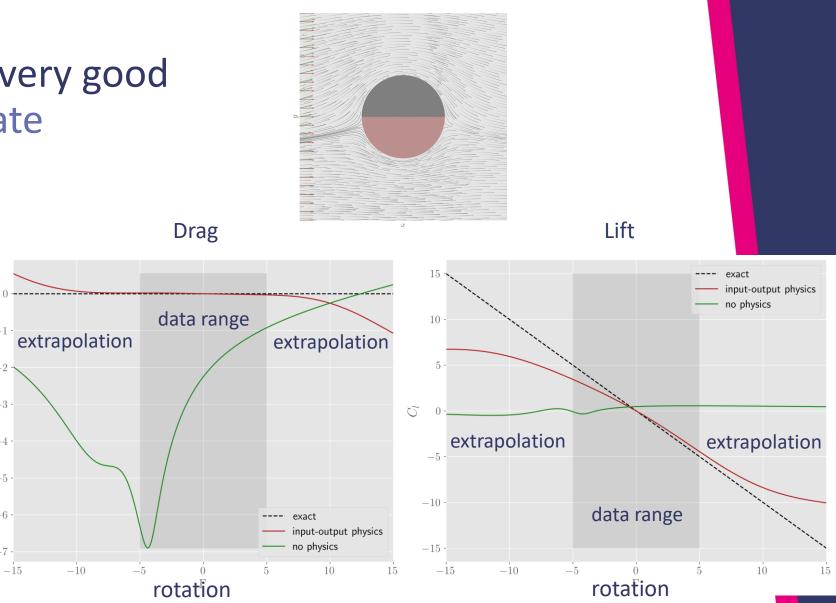
-4

-5

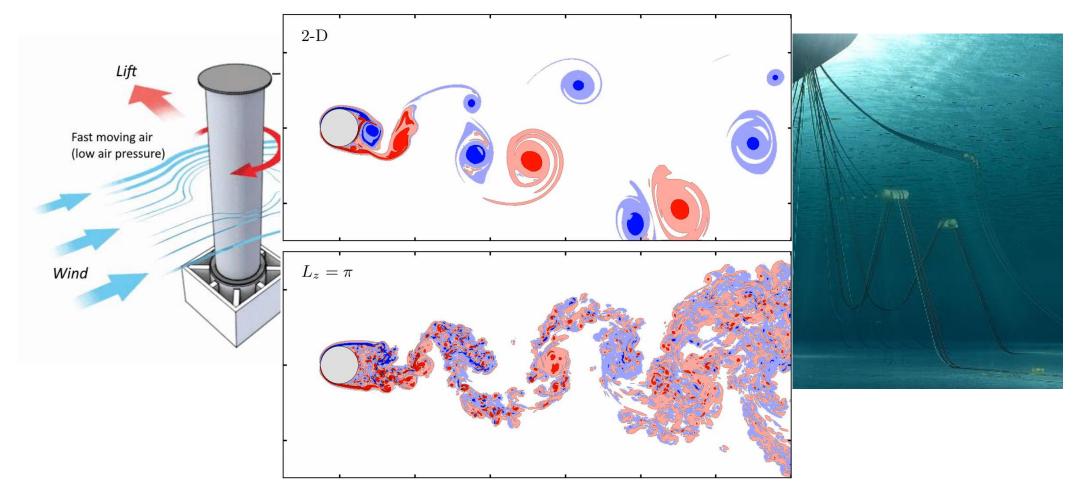
-6

-7

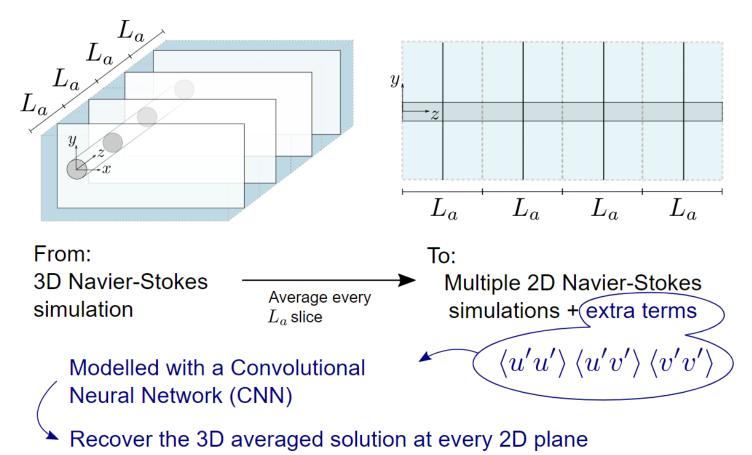
- Rotating circular cylinder
 - $[x, y, U, \Gamma, D] \rightarrow [u, v]$
 - Tiny 6 neuron network & only 500 examples
- Pure data-driven
 - Fails to predict lift
 - Completely unsymmetric
- Physics-constrained
 - Good within data limits, but poor extrapolation



Fast 2D predictions on slender geometries don't work because turbulence is 3D



Spanwise-averaged the momentum equation and Deep Learn the new turbulence model



hange of course DEK East at al

MARITIME

posium

Font et al, J Computational Physics, 2021

Combining 2D physics + deep learning recovers 3D flow

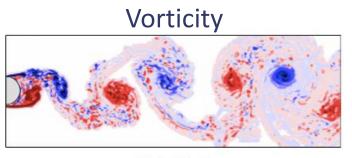
Spanwise-stress $\langle u'v' \rangle$ 3D **Deep learning**

Change of course

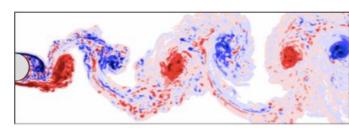
mposium

DEK

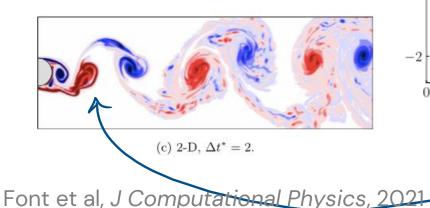
MARITIME



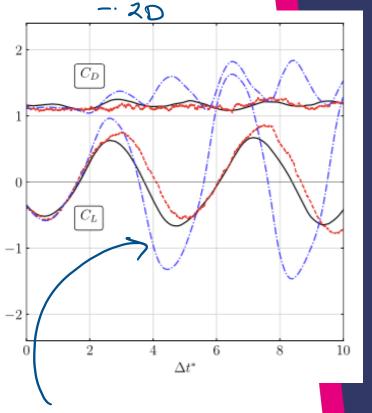
(a) $\langle 3-D \rangle$, t_0^* .



(b) SANS: 2-D + S^R , $\Delta t^* = 2$.

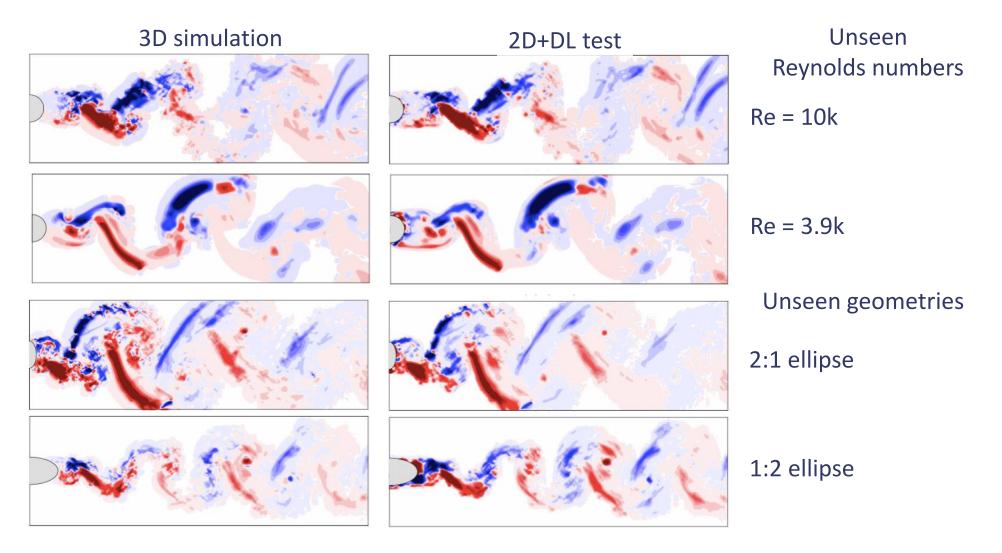


Lift and drag force



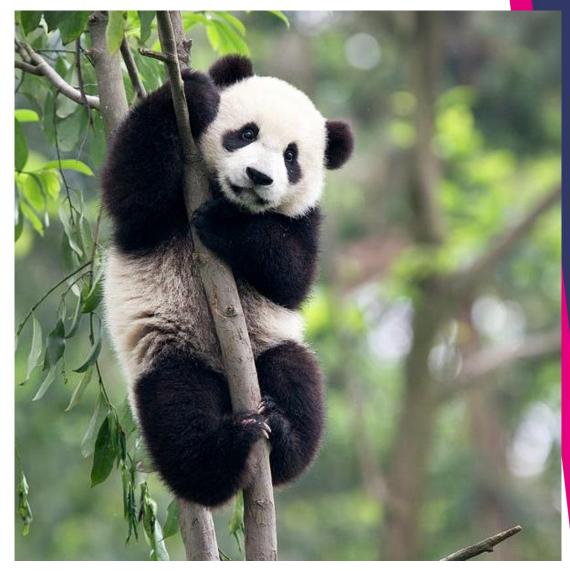
Complete deviation

Generalizes well and gives 200x speed-up per span



Font et al, *J Computational Physics*, 2021

Adding Insight to Artificial Intelligence



Change of course

Adding Insight to Artificial Intelligence

- Scaling laws and governing equations constrain ML & avoid exponential data
- Adding insight requires expertise in both ML & physics

Change of course Ymposium

